Defining the Impact of Transfusion Transmission of Hepatitis E Virus

Hepatitis E Study Group

Transfusion Microbiology, NHSBT, Colindale
Blood Borne Virus Unit, PHE, Colindale
Changing HEV epidemiology

Background

- HEV is four genotypes, 1-4, geographically, pathogenicity and host defined
- Humans are dead end hosts and do not usually pass on infection
- No licensed vaccine
- Understanding of HEV infection in England and Wales has changed
 - HEV is now most common cause of enteric acute hepatitis
 - Estimated 60 000 infections/year in England
 - High seroprevalence rates of ~13% adults
 - Very high rate of asymptomatic infections
Hepatitis E as an Emerging Zoonosis
England 2002-2013
Emerging zoonotic clade of HEV
HEV and blood safety?
Rationale for the study

- Evidence of acute HEV infection in our blood donors, with detectable viraemia
- Transfusion-associated HEV is recognised and has been reported from several countries including the UK
- Significant proportion (35-40%) of blood components given as haematological support to immunosuppressed individuals
- Current evidence suggests up to 60% of HEV infections in the immunocompromised SOT recipient may lead to chronic infection
- Lack of comprehensive data on the prevalence of donors presenting with asymptomatic viraemia at time of donation, transmission rates and clinical impact in exposed patients
- Growing momentum in Europe to address HEV and blood safety
Joint NHSBT-PHE study: HEV and Blood Safety

Study Aims

By donor screening for HEV RNA

- The incidence of HEV infection in blood donors
- The prevalence and duration of viraemia

By recipient look back

- The rate of HEV transmission
- The outcome of HEV infection from blood components
Incidence of HEV infection in blood donors

- 9382 minipools tested (x24) = 225,168 individual donations

- 79 donors whose index sample contained HEV RNA
 - = 0.03% of donations HEV RNA positive
 - = 1:2850 donations HEV RNA positive
HEV infected and viraemic donors

• None of the donors reported an illness at time of donation
• All viraemic donors were previously seronegative (testing of archived samples), supporting diagnosis of primary HEV infection
• 71% infected donors were anti-HEV seronegative at donation i.e. very early infection
• Development of symptoms (infrequent) was associated with appearance of antibody response
• All infected, initially seronegative donors seroconverted and cleared virus during follow up
Fate of viraemic donations

- 79 RNA positive donations (genotype 3)
- 129 blood components
- 67 Discarded or recalled
- 62 Transfused

60 recipients
- 43 recipients followed up
 - 25 no evidence of infection at week 16 (58%)
 - 18 evidence of infection (42%)
- 17 not possible to follow up
The 129 components generated from 79 viraemic donations

<table>
<thead>
<tr>
<th>Component</th>
<th>Number produced</th>
<th>Number Recalled/Discarded (%)</th>
<th>Number Transfused (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Blood Cells</td>
<td>71</td>
<td>48 (68%)</td>
<td>23 (32%)</td>
</tr>
<tr>
<td>Pooled Platelets</td>
<td>15</td>
<td>3 (20%)</td>
<td>12 (80%)</td>
</tr>
<tr>
<td>Apheresis Platelets</td>
<td>24</td>
<td>1 (4%)</td>
<td>23 (96%)</td>
</tr>
<tr>
<td>FFP</td>
<td>12</td>
<td>9 (75%)</td>
<td>3 (25%)</td>
</tr>
<tr>
<td>Cryoprecipitate</td>
<td>6</td>
<td>6 (100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Pooled Granulocytes</td>
<td>1</td>
<td>0 (0%)</td>
<td>1 (100%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>129</td>
<td>67 (52%)</td>
<td>62 (48%)</td>
</tr>
</tbody>
</table>
Relationship between component type and transmission

<table>
<thead>
<tr>
<th>Component</th>
<th>Number of * recipients</th>
<th>Infected Recipients (%)</th>
<th>Uninfected Recipients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Blood Cells</td>
<td>16</td>
<td>4 (25%)</td>
<td>12 (75%)</td>
</tr>
<tr>
<td>Pooled Platelets</td>
<td>10</td>
<td>4 (40%)</td>
<td>6 (60%)</td>
</tr>
<tr>
<td>Apheresis platelets</td>
<td>14</td>
<td>7 (50%)</td>
<td>7 (50%)</td>
</tr>
<tr>
<td>FFP</td>
<td>2</td>
<td>2 (100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Pooled Granulocytes</td>
<td>1</td>
<td>1 (100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>43</td>
<td>18 (42%)</td>
<td>25 (58%)</td>
</tr>
</tbody>
</table>

* Only 43 out of 60 exposed recipients were available for follow up
Transmission rates

• Recipients tested for HEV RNA, anti-HEV IgM and IgG at regular intervals whenever possible

• Follow up period of 16 weeks post transfusion in order to exclude transmission

• Where there was evidence of infection, follow up until seroconversion and HEV RNA clearance

• 42% transmission rate: Confirmation of donor-derived transmission by alignment of viral sequences from donor–recipient pairs

• All genotype 3, predominantly clade 2
Outcome in HEV infected recipients
Outcome in 18 HEV infected recipients (1)

Immunocompetent recipients
• 8 cleared infection rapidly, with seroconversion

Immunocompromised recipients
• 4 viraemic at time of death (week 10-15)
• 2 exhibited prolonged viraemia (week 4-42) before development of anti-HEV and RNA clearance
• 1 remains viraemic at week 43
• 3 responded to intervention
Outcome in 18 HEV infected recipients (2)

<table>
<thead>
<tr>
<th>Inferred immunosuppression</th>
<th>Number of recipients</th>
<th>Median number of weeks from transfusion *</th>
<th>Proportion (%) who developed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>to RNA detection</td>
<td>to seroconvert</td>
</tr>
<tr>
<td>None or mild</td>
<td>8</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Moderate</td>
<td>6</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Severe</td>
<td>4</td>
<td>9</td>
<td>37.5</td>
</tr>
</tbody>
</table>

* Only numerate values included

** excludes those who died whilst infected
Clinical outcome HEV-infection

- Evidence of prolonged viraemia, one patient still viraemic
- One case of symptomatic post transfusion hepatitis
- Evidence of the eventual development of the antibody response leading to viral clearance
- Appearance of antibody coincides with subclinical hepatitis with raised LFTs
- Understanding what influences outcomes is very complex
 - Level and pattern of immunosuppression
 - Underlying medical conditions
 - Measure of morbidity
 - Length of follow up
What is a proportionate response? Have we got all the answers we need?

- Deal with the source of infection…animal husbandry
- NAT screen donors…all or bespoke donor panel?
 - Best NAT strategy?
 - Understand local epidemiology
- Select panel of immune donors
- Modify components, pathogen reduction…..HEV escapes
- Screening and surveillance of immunocompromised patients for HEV, to facilitate intervention, as for CMV
Acknowledgements

Public Health England, Colindale
Richard Tedder
Samreen Ijaz
Kate Tettmar
Becky Haywood
John Poh
Poorvi Patel
Steve Dicks
Alessandra Berto
Katherine Russell
Iain Kennedy
Filton testing, NHSBT
Alex Boateng

NHSBT
Alan Kitchen
Ines Ushiro-Lumb
Patricia Hewitt
Su Brailsford
Jo Tossell
Raji Salker
Rachel Brett
Gill Rayfield
Nazow Azim
Ruwanika Kothalawala
Chair and Members of DMC

Donors

Recipients
Thank you