Infections and the immunosuppressed transplant recipient
Infections in the allograft recipient

• Direct effect
• Indirect effects
 – Production of global suppression of host defences to leads to risk of super-infections (such as *Pneumocystis, Candida, Aspergillus* etc)
 – Modulation of endothelium and leucocytes leads to changes in MHC and other antigens, affecting allograft injury
 – Some infections may lead to malignancy
Organ transplants

• Donors
 – Living
 • Directed
 • Altruistic
 • Domino
 – Deceased
 • Neurological death
 • Circulatory death

• Organs
 – Kidney
 – Liver
 – Pancreas
 – Heart
 – Lung
 – Bowel
 – Face
 – Hand
 – Limb
 – Other: uterus, ovary
There are fewer potential donors

Source: Office for National Statistics

15% fall in deaths <75 yrs
Donors are older and heavier

Age of deceased donors

BMI of deceased donors
Outcomes after transplant

Long-term graft survival after first kidney only transplant from donors after brain death, 1 January 1996 – 31 December 2008

Long-term patient survival after first elective adult liver only transplant from donors after brain death, 1 January 1996 – 31 December 2008

Source: Transplant activity in the UK, 2009-2010, NHS Blood and Transplant
Classification of Infections in transplant patients (after Rubin)

• Infections related to a technical complication
• Infections related to nosocomial hazard
• Infections related to particular exposure within the community
• Viral infections of particular importance to the transplant community
Classification of Infections in transplant patients (after Rubin)

- Infections related to a technical complication
- Infections related to nosocomial hazard
- Infections related to particular exposure within the community
- Viral infections of particular importance to the transplant community
Classification of Infections in transplant patients (after Rubin)

- Infections related to a technical complication
- Infections related to nosocomial hazard
 - *Aspergillus, Legionella, VRE, MRSA*
- Infections related to particular exposure within the community
- Viral infections of particular importance to the transplant community
Classification of Infections in transplant patients (after Rubin)

- Infections related to a technical complication
- Infections related to nosocomial hazard
- Infections related to particular exposure within the community
 - Systemic mycotic infections related to geography such as *Blastomycosis, Histoplasma*
 - Community acquired opportunistic infections from ubiquitous saprophytes as *Aspergillus, Nocardia*
 - Respiratory infections as *Myco, Flu* (incl H1N1)
- Viral infections of particular importance to the transplant community
Classification of Infections in transplant patients (after Rubin)

- Infections related to a technical complication
- Infections related to nosocomial hazard
- Infections related to particular exposure within the community
- Viral infections of particular importance to the transplant community
 - Herpes, Hepatitis viruses, Papillomavirus and HIV
With rejection you lose the graft
With infection you lose the patient
Time Table of Infections

• First month
 – Infections present prior to transplant, not eradicated or exacerbated by surgery
 – Donor derived infection
 – ‘Usual’ infections associated with major surgery
Time Table of Infections

• Months 1-6
 – Legacy of month 1 infections
 – Direct effect of immunomodulating virus
 • CMV
 • EBV
 • Hepatitis B, C
 • HIV
 – Consequence of immunosuppression and infection
 • Opportunistic infection with Aspergillus, Pneumocystis, Nocardia
Time Table of Infections

- After months 6
 - 80% have no major issues and infections similar to non-immunosuppressed patients
 - 5-15% have chronic viral infections with HBV, EBV, HHV-8, papilloma etc
 - 5-10% are at increased risk because of organ dysfunction, need for greater immunosuppression
Immunosuppression

• Varies between organ and between centres
• Induction agents
 – Anti-lymphocyte, Campath
• Maintenance agents
 – Corticosteroids
 – CNI (cyclosporin, tacrolimus)
 – Antimetabolites (azathioprine, mycophenolate)
 – mTORi (sirolimus, everolimus)
 – Anti-CTLA4 Ig (belatacept)
Induction Therapy in US
(OPTN/SRTR 2008)
Immunosuppression for maintenance at 1 year

![Graph showing immunosuppression data for 1997 and 2003]

- Tac
- Tac+MMF
- Tac+Ster
- CyA+ster
- CyA+Aza/MMF
Rituximab

- Anti CD20
- Causes lysis of B lymphocytes
- Licensed for some lymphomas
- Main issue: cytokine release syndrome
- Effective in
 - AIH
 - Severe Acute Rejection
 - Induction therapy (van der Hoogan 2010)
Antibodies to CTLA-4

- **Abatacept**
 - Fusion protein that conserves natural structure
 - Licensed for use in RhA

- **Belatacept**
 - Approved for renal transplants (with other IMS and EBV status)

From Bhat et al, Kidney International. 1=Rituximab, 4=CTLA4
Sotrastaurin (AEB071)

- Pan PKC inhibitor and blocks early T-cell activation
- Animal data shows prevents allograft rejection
- Effective in some cases of Psoriasis
- Early renal studies disappointing:
 - Combination with Tacrolimus may be more effective than with MMF (Budde 2010)
- Liver studies on-going

From Drugs of the Future (2009)
Antimicrobial prophylaxis

• Intense
 – Antibacterial
 – Antifungal
 • Usually topical antifungal treatment

• First three months
 – Anti-PCP (such as co-trimoxazole)
 – Anti-CMV
Prophylaxis against TB

• Most guidelines recommend prophylaxis in those at risk
 – Endemic countries
 – Born in high risk areas
 – Past history
 No good data to support efficacy (Currie 2010)

• Recent survey showed great variation in practice

• Most common is Isoniazid for 6 months
CMV

• D+/R- greatest risk which may cause reactivation or new infection

• Guidelines
 – Check CMV status pre-transplant with IgG
 – Monitoring and diagnosis
 • pp65 or quantitative CMV PCR
 – Immunohistopathology
Clinical pattern of CMV

• Asymptomatic
• Symptomatic
 – Viremia, fever, malaise
• Invasive disease
 – Hepatitis, colitis, pneumonitis, retinitis,
CMV treatment

• Prophylaxis
 – Oral valganciclovir usually for 3 months

• Active disease
 – Valganciclovir
 – Ganciclovir
 – Immunoglobulin
 – Foscarnet

Treatment is usually IV ganciclovir followed by oral valganciclovir
CMV: prophylaxis or pre-emptive treatment?

<table>
<thead>
<tr>
<th>Effect</th>
<th>Prophylaxis</th>
<th>Pre-emptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMV disease</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Late disease</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Better graft survival</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Lymphoma/KS</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Difficult logistics</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Drug Costs</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Monitoring costs</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Resistance</td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>
CMV and Rejection

- During CMV infection, IMS normally reduced
- CMV may be causally or indirectly associated with allograft rejection
- Sirolimus may have an anti-CMV effect
EBV and PTLD

- Risk factors for PTLD
 - Degree and type of immunosuppression
 - HLA matching
 - Absence of protective T cells
 Greatest risk in small bowel recipients
 Impact of belatacept

- EBV DNA monitoring
 - Rise in EBV DNA precedes PTLD on those 80%
 - EBV-driven PTLD
 - Used in high risk populations
Treatment options

- Reducing tumour burden
 - Surgery
 - Radiotherapy
 - Chemotherapy (such as R-CHOP)

- Changing immune response
 - Reducing IMS
 - Cell therapy with EBV-specific CTL
Use of EBV-CTL

• Tumour usually originates from host B cells, so CTLs should be
 – Autologous
 • First choice
 • More effective
 • Logistic issues to prepare adequate numbers
 – Allogeneic HLA-matched
 • Availability
 • Sub-optimal tumour recognition
 • May be affected by patient’s alloreactive T cells

• Clinical studies encouraging
HIV and Transplantation

• Increasing but small numbers of HIV infected patients are receiving grafts (mainly liver for end-stage HCV cirrhosis)
• Outcomes reasonable with good (50-80%) but sub-optimal survival
• Main issues are drug interactions between HAART and CNI and other IMS
HIV and liver transplantation

• Small series
• Average 1, 3 and 5 year survival 75%, 65% and 55% (compared with 92% 1 year survival and 75% 5 year survival in non-HIV)
HEV and organ transplantation

- Used to be thought a self-limiting hepatitis infection
- Several cases described of Chronic HEV with no clear risk factor
- Diagnosis by PCR
- Presents as graft non-specific hepatitis
HHV and organ transplantation

• HHV-6 A and B, HHV-7
• 1% will develop clinical illness
• Fever, malaise, hepatitis, encephalitis
• Associated with increased risk of
 – CMV disease
 – Rejection
 – Opportunistic infection
• Said to be common (1%)
• Rarely looked for
• Treatment with ganciclovir, foscarinet, cidofovir
Infections, cancer and transplantation (Engels 2011)

- SIR of possibly-infection related cancer
 - Non Hodgkin lymphoma 7.5
 - Hodgkins 3.6
 - Liver 12
 - Stomach 1.7
 - Kaposi 61
 - Oropharynx 2
 - Anus 5.8
 - Vulva 7.6
 - Cervix 1.0
Infections, cancer and transplantation (Engels 2011)

<table>
<thead>
<tr>
<th>Possibly-infection related cancer</th>
<th>Non Hodgkin</th>
<th>Hodgkins</th>
<th>Liver</th>
<th>Stomach</th>
<th>Kaposi</th>
<th>Oropharynx</th>
<th>Anus</th>
<th>Vulva</th>
<th>Cervix</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIR</td>
<td>7.5</td>
<td>3.6</td>
<td>12</td>
<td>1.7</td>
<td>61</td>
<td>2</td>
<td>5.8</td>
<td>7.6</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-infection related cancer</th>
<th>Lung</th>
<th>Kidney</th>
<th>Colo-rectum</th>
<th>Breast</th>
<th>Melanoma</th>
<th>Thyroid</th>
<th>Skin (NMSC)</th>
<th>Lip</th>
<th>Uterus</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIR</td>
<td>2.0</td>
<td>4.7</td>
<td>1.2</td>
<td>0.9</td>
<td>2.4</td>
<td>3</td>
<td>13.9</td>
<td>16.8</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Donor Derived Disease
Donor Transmitted Risks

• Cancer
 – Risks of donor transmitted cancer
 • DCD donor
 • DBD donor
 • Living donor
 – Risks of donor derived cancer
 – De novo cancer

• Infection
Screening of deceased donors

- History
 - From family, family doctor, records
 - Including life-style, travel, sexual, drug use
- Review of investigations done
- Serology
 - HBV, HCV, HIV, HTLV, Syphilis, CMV

Note:

limited time from consent to implantation

UK law prohibits testing until consent given

tests for infections such as West Nile, Malaria are not routinely done in UK
Risks and Benefits
Donor Derived Infections

• Solid Organ Transplantation is associated with risk

• Mortality on the waiting list
 – Kidney 6%/year
 – Liver 17%/year
 – Heart/lung 18%/year

• Waiting lists do not reflect the need for transplantation
Generalisations

• Potential DDD in <1% donors
• Where DDD does occur, there is significant morbidity and mortality
• Significant under-reporting
• Role of donor screening uncertain
 – Impact of NAT
• Serology is unreliable for detecting DDD for HCV
Potential Donor Derived infections
disease transmissions (OPTN 2005-9)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Reports</th>
<th>Confirmed</th>
<th>% Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus</td>
<td>86</td>
<td>31</td>
<td>8</td>
</tr>
<tr>
<td>Bacteria</td>
<td>38</td>
<td>26</td>
<td>7</td>
</tr>
<tr>
<td>Fungus</td>
<td>30</td>
<td>26</td>
<td>8</td>
</tr>
<tr>
<td>Myco</td>
<td>26</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Parasitic</td>
<td>21</td>
<td>13</td>
<td>4</td>
</tr>
</tbody>
</table>
Infectious agents in DDD

- **Virus**
 - HCV 25
 - HIV 15
 - West Nile 14
 - HBV 13
 - HTLV 3

- **Fungus**
 - Coccidio 6
 - Histoplasma 6
 - Crypto 5
 - Candida 5
 - Zygomycetes 5
 - Aspergillus 4
Mycobacterial and parasitic DDD

• Parasitic
 – Mainly Chagas (9): screening could reduce risk

• Mycobacteria: 26 cases reported (22 TB)
 – Many recipients do not have respiratory symptoms
 – No robust screening for donors
HIV/HCV transmissions

Risk per 1000 high risk donors screened by serology

<table>
<thead>
<tr>
<th>Group</th>
<th>HIV</th>
<th>HCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemophiliac</td>
<td>0.05</td>
<td>0.46</td>
</tr>
<tr>
<td>IVDU</td>
<td>12.9</td>
<td>350</td>
</tr>
</tbody>
</table>
HIV transmission

• One instance of HIV transmission to organ recipients because of lab error in Taiwan (Parry 2011)

• Other cases rarely described
HTLV-1

• Infects 15-20 million
• High prevalence areas
 – Japan 10%, Caribbean 3-6%, Africa 1-5%
• Low prevalence areas
 – Healthy blood donors in Europe and US 0.0006% and 0.046%
HTLV associated disease

HTLV-2
• Unknown but neurological disease, lymphocytic leukemia and arthritis are reported

HTLV-1
age adjusted risk of death 1.4
• Adult T-cell leukemia
 – Life time risk of infected patients 2-5%
• HTLV-associated myelopathy
 – Life time risk of infected patients 1-2%
Screening

- ELISA
 - Sensitive but lack specificity in low risk groups
- PCR
HTLV transmitted disease

• 4 donors transmitted HTLV to 6 recipients (Only 1 confirmed HTLV)

• Outcomes of
 – death (HR 1.06)
 – graft failure (HR 1.2)
HTLV and Transplantation

• US data
 – 162 recipients of 134 repeat reactor donors identified
 no case of HTLV related disease

• UK data
 – 2004-2011 HTLV available for 1844/5984 donors
 – 4/1844 were ‘repeat reactive’
 – 8 organ recipients (6 kidney, 1 liver, 1 pancreas) followed for up to 6 years
 – None developed any HTLV-related symptoms
HBV and transplantation

• No longer a major issue
• Pre transplant HBV patients treated with anti-virals until DNA undetectable
• Post Liver transplant: HB Ig and antivirals
• Donor grafts with anti-HBc, liver recipient given long term antiviral
H1N1

• UK authorities advised against use of organs from deceased donors with H1N1
H1N1

- 5 organ donors with H1N1 at the time of donation, donated 9 kidneys, 3 livers and 1 heart
- 9 given oseltamivir
- None developed signs or symptoms of influenza
- None had H1N1 cultured
HCV and transplantation

• HCV
 – Associated with graft hepatitis and cirrhosis in accelerated form
 – Also diabetes, glomerulonephritis
 – Avoid pulsed high dose steroids

• HCV donors
 – Used for HCV-positives recipients
 – Genotype super-infection with G1 may be important
HCV treatment

• Peg-IFN and ribavirin
• Role of telaprevir and boceprevir uncertain in this indication
• Difficult because of poor tolerance
Conclusions

• De novo infections are common but usually responsive
• Donor derived infections are rare but may be serious
• De novo cancers are increased and may be related to infections